Speed for different kernels in scikit-learn's SVM
I'm using scikitlearn in Python to create some models while trying different kernels. I was surprised to see that rbf was fit in under a second, whereas linear took a minute and poly took hours. Can anyone explain why to help me?
My code:
import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt
from sklearn.metrics
import mean_squared_error, r2_score
f = open(datafile)
X = np.empty([0,1], dtype = int)
y = np.array([])
for i in range(100):
my_lines = f.readline().split(" ")
t = np.array([[int(my_lines[0])]])
n = np.array([int(my_lines[1])])
X = np.concatenate((X, t), axis =0 )
y = np.concatenate((y, np.array([int(my_lines[1])])), axis = 0)
f.close()
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr_lin = SVR(kernel='linear', C=1e3)
svr_poly = SVR(kernel='poly', C=1e3, degree=3)
svr_rbf.fit(X, y)
svr_lin.fit(X, y)
svr_poly.fit(X, y)
The data:
0 22
1 23
2 23
3 23
4 25
5 24
6 25
7 26
8 26
9 30
10 29
11 29
12 30
13 30
14 30
15 31
16 29
17 28
18 29
19 31
20 30
21 30
22 31
23 31
24 30
25 31
26 31
27 30
28 29
29 31
30 33
31 31
32 32
33 30
34 30
35 30
36 29
37 30
38 29
39 29
40 27
41 28
42 28
43 27
44 27
45 28
46 28
47 29
48 29
49 28
50 28
51 29
52 27
53 27
54 28
55 28
56 28
57 30
58 32
59 31
60 30
61 28
62 28
63 30
64 27
65 27
66 28
67 27
68 29
69 33
70 39
71 35
72 34
73 29
74 30
75 28
76 28
77 29
78 27
79 26
80 25
81 17
82 0
83 0
84 29
85 21
86 20
87 18
88 19
89 19
90 19
91 18
92 17
93 18
94 20
95 19
96 20
97 19
98 18
99 18
Topic machine-learning-model data-mining machine-learning
Category Data Science