How Did Keras Determine The Number of Parameters In My Model
I have the following keras model:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential()
layer_in = keras.Input(shape=(256))
layer1 = layers.Dense(2, activation=relu, name=layer1)
layer2 = layers.Dense(3, activation=relu, name=layer2)
layer3 = layers.Dense(4, name=layer3)
model.add(layer_in)
model.add(layer1)
model.add(layer2)
model.add(layer3)
model.build()
Which produces the following when keras.summary()
is called
Model: sequential_8
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
layer1 (Dense) (None, 2) 514
layer2 (Dense) (None, 3) 9
layer3 (Dense) (None, 4) 16
=================================================================
Total params: 539
Trainable params: 539
Non-trainable params: 0
_________________________________________________________________
How did Keras determine the layers should have 514, 9, and 16 parameters respectively?
I would have thought that the first layer would have 256 parameters since the input layer, layer_in
, was instantiated with shape=(256)
Topic keras tensorflow
Category Data Science